A contractor usually gets this information from visual inspection, from diagnostic tests or from experience. A radon vent fan connected to the suction pipes draws the radon gas from below the home and releases it into the outdoor air while simultaneously creating a negative pressure or vacuum beneath the slab. Common fan locations include unconditioned home and garage spaces, including attics and the exterior of the home.
Passive subslab suction is the same as active subslab suction except it relies on natural pressure differentials and air currents instead of a fan to draw radon up from below the home. Passive subslab suction is usually associated with radon-resistant features installed in newly constructed homes.
Passive subslab suction is generally not as effective in reducing high radon levels as active subslab suction.
Some homes have drain tiles or perforated pipe to direct water away from the foundation of the home. Suction on these tiles or pipes is often effective in reducing radon levels.
One variation of subslab and drain tile suction is sump-hole suction. Often, when a home with a basement has a sump pump to remove unwanted water, the sump can be capped so that it can continue to drain water and serve as the location for a radon suction pipe.
Block-wall suction can be used in basement homes with hollow block foundation walls. This method removes radon and depressurizes the block wall, similar to subslab suction. This method is often used in combination with subslab suction.
Crawlspace Homes
An effective method to reduce radon levels in crawlspace homes involves covering the earth floor with a high-density plastic sheet. A vent pipe and fan are used to draw the radon from under the sheet and vent it to the outdoors. This form of soil suction is called submembrane suction, and when properly applied is the most effective way to reduce radon levels in crawlspace homes. Another less-favorable option is active crawlspace depressurization, which involves drawing air directly from the crawlspace using a fan. This technique generally does not work as well as submembrane suction and requires special attention to combustion appliance backdrafting and sealing the crawlspace from other portions of the home. It also may result in increased energy costs due to loss of conditioned air from the home.
In some cases, radon levels can be lowered by ventilating the crawlspace passively, or actively, with the use of a fan. Crawlspace ventilation may lower indoor radon levels both by reducing the home’s suction on the soil and by diluting the radon beneath the home. Passive ventilation in a crawlspace is
achieved by opening vents or installing additional vents. Active ventilation uses a fan to blow air through the crawlspace instead of relying on natural air circulation. In colder climates, for either passive or active crawlspace ventilation, water pipes, sewer lines and appliances in the crawlspace may need to be insulated against the cold. These ventilation options could result in increased energy costs for the home.
Some natural ventilation occurs in all homes. By opening windows, doors and vents on the lower floors, you increase the ventilation in your home. This increase in ventilation mixes outdoor air with the indoor air containing radon, and can result in reduced radon levels. However, once windows, doors and vents are closed, radon concentrations most often return to previous values within about 12 hours. Natural ventilation in any type of home should normally be regarded as only a temporary radon reduction approach because of the following disadvantages: loss of conditioned air and related discomfort; greatly increased costs of conditioning additional outside air; and security concerns.
Other Types of Radon Reduction Methods
Other radon reduction techniques that can be used in any type of home include: sealing, house or room pressurization, heat recovery ventilation and natural ventilation.
Sealing cracks and other openings in the foundation is a basic part of most approaches to radon reduction. Sealing the cracks limits the flow of radon into your home, thereby making other radon reduction techniques more effective and cost-efficient. It also reduces the loss of conditioned air. EPA does not recommend the use of sealing alone to reduce radon because, by itself, sealing has not been shown to lower radon levels significantly or consistently. It is difficult to identify and permanently seal the places where radon is entering. Normal settling of your home opens new entry routes and reopens old ones.
House or room pressurization uses a fan to blow air into the basement, or living area from either upstairs or outdoors. It attempts to create enough pressure at the lowest level indoors — in a basement, for example — to prevent radon from entering into the home. The effectiveness of this technique is limited by home construction, climate, other appliances in the home and occupant lifestyle. In order to maintain enough pressure to keep radon out, the doors and windows at the lowest level must not be left opened, except for normal entry and exit. This approach generally results in more outdoor air being introduced into the home, which can cause moisture intrusion and energy penalties. Consequently, this technique should only be considered after the other, more-common techniques have not sufficiently reduced radon.
Remodeling Your Home After Radon Levels Have Been Lowered
If you decide to make major structural changes to your home after you have had a radon reduction system installed, such as converting an unfinished basement area into living space, ask your radon contractor whether these changes could void any warranties. If you are planning to add a new foundation for an addition to your home, ask your radon contractor what measures should be taken to ensure reduced radon levels throughout the home. After you remodel, retest in the lowest lived-in area to make sure the construction did not reduce the effectiveness of the radon reduction system.